

Secure Distributed Collaboration Capabilities and Infrastructure

Deb Agarwal
Distributed Systems Department
Lawrence Berkeley National Laboratory

Outline

- Background
- Collaborative Interaction Tools
 - Presence
 - Messaging
 - File sharing
- Transport mechanisms
 - High performance TCP
 - Group communication
- Security
 - Authentication
 - Authorization
 - Key agreement
 - Incremental Trust
- Grid middleware
- End-2-End Monitoring

Scientific Collaboration Environment

Collaborative communication options

- Formal meeting in person
- Videoconference
- Teleconference/telephone
- Informal discussion/meeting
- File/document sharing
- E-mail/chat
- Papers/documents/web

Increasing % of time

Decreasing synchrony

Collaboration Realities

- Collaboration takes effort
 - Must provide a perceptible benefit
 - Must fit with current work practices
- Collaboration tools need to be used regularly (not on the shelf)
- Group must already have a strong need to collaborate

Collaborative Design Process

- Identify key activities to share
- Make sure all participants have an incentive
- Develop realistic use cases/interactions
- Role play the interactions
- Attempt the interaction using simple tools like the web or VNC and the telephone
- Identify critical missing elements
- Keep it as simple as possible
- Get in the habit of using it
- Support bootstrap efforts

Pervasive Collaborative Computing Environment Goals

- Support 'continuous' collaboration
 - Ubiquitous available anywhere
 - Synchronous and asynchronous
 - Persistent
- Low threshold for entry into the environment
- Target daily tasks and base connectivity
- Leverage off of existing components
- Secure environment
- Scale to support small and large groups

PCCE – Messaging

- Baseline presence information (rendezvous)
- Messaging
 - Permanent contexts topical meeting places
 - Group and private text-based messaging
 - Storage of preferences and current state
- Security
 - X.509 or username/password authentication
 - Data encryption using SSL connections
- Asynchronous notes

PCCE - Secure Messaging

Peer-to-Peer File-Sharing

- Files shared from current locations
- Not dependent on servers
- Scalable to large number of users
- Distributed authorization
- Secure environment

Future Directions

- Collaborative workflow definition and tracking
- Shared editing
 - Code development
 - Text document
- Improved asynchronous messaging
- Shared applications
- Integration of videoconferencing

Communication Protocols to Support Collaboratories

- Scalability
 - High data throughput
 - Large numbers of users interacting
- Support for peer-to-peer communication
- Robust not dependent on servers

Group Communication

Scalability and robustness

- Provide efficient, reliable, and secure communication between collaborating sites
- Multicast communication channel directly connecting the participants
- Support participants spread across the Internet
- Support ad hoc formation of groups
- Remove dependence on servers

InterGroup Protocols

Goals

- Support a broad range of applications
 - Broadcast one-to-many
 - Many-to-many
- Provide a broad range of guarantees
 - Reliable and unreliable delivery
 - Sender order, total order, and unordered
- Based on IP Multicast
- Scale to the Internet
 - Many groups
 - Many members in each group
 - Heterogeneous latency between members

The InterGroup Protocol

- Based on experience building past protocols
- Split group into a sender and receiver group
- Sender group membership
 - processes are in the sender group only while transmitting messages
 - strictly maintained
 - very dynamic
- Receiver group membership
 - not strictly maintained
 - hierarchically organized to scale to large groups
 - used for retransmissions and garbage collection

InterGroup Schematic

Improving TCP Performance

- Goal improve performance on high bandwidth*delay product links
- HighSpeed TCP (proposed by Sally Floyd)
- Study based on simulations of the protocol
 - Bulk transfer capabilities
 - Fairness
 - Response to active queue management
- Results are very promising

HighSpeed TCP Performance

Security

Goals

- Identify users authentication
- Define and enforce access control authorization
- Protect confidentiality of data encryption
- Define roles and levels of trust
- Easy to configure and use from any location

Tools

- Akenti authorization server
- Secure group layer
- Message level security
- Incremental trust

Akenti Goals

- Access based on policy statements made by multiple independent stakeholders
- Use Public Key Infrastructure (X.509) standards
 - To identify users
 - Create digitally signed certificates
 - Use TLS/GSI authenticated connections
- Emphasize usability
- Targeted at distributed environments
 - Users, resources, stakeholders are geographically and administratively distributed

Akenti Policy

- Minimal local authorization policy files:
 - Who to trust, where to look for certificates.
- Most access control policy contained in distributed digitally signed certificates:
 - X.509 certificates for user identity and authentication
 - UseCondition certificates containing stakeholder policy
 - Attribute certificates in which a trusted party attests that a user possesses some attribute, e.g. training, group membership

Secure Group Layer - SGL

Goals

- Provide a secure channel for the group with properties similar to the SSL
- Group authorization and access control is individually enforced
- Fully distributed group key management (not centralized)
- Portable implementation

SGL Model of Communication

- \bullet A set of n players
 - each player is represented by an oracle
 - each player holds a low-entropy secret (PW)
- A multicast group consisting of a set of players

PW

Multicast group with sk

PW

Group Diffie-Hellman Algorithm

- Up-flow: U_i raises received values to the power of the values (x_i, a_i) and forwards to U_{i+1}
- Down-flow: U_n processes the last up-flow and broadcasts

$$\mathbf{a}_{1}, x_{1}$$

$$[g_1, g_1^{x_I}]_{pw}$$

$$[g_2^{x_2}, g_2^{x_1}, g_2^{x_1}, g_2^{x_1}]_{pw}$$

 a_3, x_3

InterGroup + SGL

Message Level Security

- Provide a reliable communication between an initial requestor and a Grid Services provider
 - message-level communication channel connecting the two entities
 - messages may be operated on by multiple intermediaries that perform actions (e.g, routing)
- Provide a secure communication between an initial requestor and a Grid Services provider
 - support confidentiality, authenticity, and integrity
 - support authorization and access control
 - support secure modification of messages operated on by intermediaries

Security at the Application Layer: Architecture

WS-SecureConversation

WS-Security

†

Simple Object Access Protocol (SOAP)

Remote Procedure Call

Document-based

Hypertext Transfer Transport Protocol (HTTP)

Security at the Application Layer: WS-SecureConversation

- The WS-SecureConversation component is similar to the TLS protocol but at the next level up (message-level)
 - confidentiality, authenticity, and integrity
 - authorization and access control
 - security services optional
- The WS-SecureConversation component establishes a security context between a requestor and a services provider
 - achieves confidentiality, authenticity, integrity using the WS-Security component
 - achieves authorization and access control using the WS-Policy and WS-Trust components
 - permits routing of SOAP messages without compromising the message security

Incremental Trust

- Allow new users to integrate into the collaboration gradually
- Support for levels of trust
- Multiple authentication methods

Access to Grid Computing Capabilities

- On-demand simulations
- Distributed analyses
- Shared visualizations

Python CoG Kit

- Provide a <u>mapping</u> between Python and the Globus Toolkit[®].
- Extend the use of Globus by enabling to access advanced Python features such as exceptions and objects for Grid programming.
- Grid portals

Grid Services Project

- Develop Open Grid Services Architecture
 - Grid Services Specifications
 - Open Grid Services Infrastructure
 - Implementations in multiple languages and protocols
 - Higher-level Services
 - Application services and infrastructure

Keeping an Eye on the System

- Monitor system performance
- Detect and identify problems
- Debug problems

End-2-End Monitoring The Problem

- When building distributed systems, we often observe unexpectedly low performance
 - the reasons for which are usually not obvious
- The problems can be in any of the following components:
 - the applications
 - the operating systems
 - the disks, network adapters, bus, memory, etc. on either the sending or receiving host
 - the network switches and routers, and so on

End-2-End Monitoring Goals

- Improve end-to-end data throughput for data intensive applications
- Provide the ability to do performance analysis and fault detection
- Provide accurate, detailed, and adaptive monitoring of all of distributed computing components, including the network
- This requires a unified view of a wide range of sensor data, from network to host to application
 - define common protocols and data formats
 - GGF efforts in this area
 - work with others to integrate existing components using this framework
 - e.g.: PingER, NWS, MDS
 - develop missing pieces
 - e.g.: event archives

End-2-End Example

 You know your end-to-end network path is all 622 Mbps or higher, but your file transfers are slow; what do you do?

- Step 1: use "-bw" option to get performance results
 - E.g.: Tells you you are getting 10 Mbps

Step 2: Add detailed application instrumentation

Step 3: add host monitoring (e.g.: CPU load and TCP retransmits)

Step 4: Add TCP instrumentation

Linux TCP SACK Bug: This happens when CWND is large and get manySACKs at one time

Self Configuring Network Monitor (SCNM)

- SCNM is a passive monitoring system designed to address the following issues:
 - Ability for network <u>users</u> to monitor their own traffic
 - Ability to identify the source of network congestion or other problems (e.g. a LAN or WAN issue)
 - Ability for application developers to characterize their own traffic, and how it is impacted by the network
 - Protocol analysis and debugging
 - Often not possible to capture packet traces at the sending host ⇒tcpdump will often lose packets when trying to capture a high bandwidth stream

Step 5: Add Passive Monitoring "Inside" the Network

Typical Passive Header Capture Results

Conclusion

- Collaborative interactions need to be supported by a continuum of tools
- Required infrastructure/middleware is beginning to become available
- Scalability and security are important aspects that must be considered
- Monitoring is important for tracking what is happening
- Ease of use/adoption is critical

http://www-itg.lbl.gov/

Components

Messaging File Sharing Shared App Authentication Authorization **Access Control** Secure Sockets Layer Secure Group Layer **Group Communication TCP**

Access Grid Nodes (ANL)

Release Status

- Released code is available for
 - Akenti authorization library with C++ and C interfaces
 - Akenti standalone authorization server
 - support for runtime conditions
 - Java GUI and command line tools to create and verify policies
 - http://www-itg.lbl.gov/Akenti/download.html